

Ingegneria delle Telecomunicazioni

Satellite Communications

12. Let There be Light – Optical Sat Links

Marco Luise marco.luise@unipi.it

The Mantra Question: (How) Does it Work?

- Transmitting/receiving optics are optical lenses (telescopes) to appropriately focus
 or de-focus the laser beam
- The optics needs to be oriented since optical emission is very very focused
- The digital format is similar to what is used on fibers: OOK, PPM, Coherent QPSK

The Aperture of an Optical Beam

• This picture describes the so-called *diffraction limit* of a telescope of diameter D, and is the equivalent of the $J_1(\cdot)$ radiation pattern of an RF (parabolic) antenna

The aperture of the beam is defined as the first-null angle and can be evaluated by the usual formula θ_0 =1.22 λ /D With a 50-cm telescope and λ =1.55 μ m we get from GEO altitude a spot on Earth of *d*=270 m!

Why FSO (Free-Space Optics)?

- Potentially Ultra-Wide Bandwdith
 - same as on fibers
- Very narrow beam
 - very easy space-division multiple access
 - Ideal for extra-terrestrial communications
- Ultra high "antenna" (i.e., telescope) gain
 - Very efficient link with modest optical power on-board

Sample LEO-to-Ground Optical Link Budget

Transmitted power P _T (dBm)	15.40
Transmitting gain G _T (dB)	85.08
Transmitter loss L _T (dB)	1.97
Pointing loss L _P (dB)	5.70
Free-space loss L _s (dB)	259.06
Atmospheric loss L _A (dB)	2.66
Receiving gain G _R (dB)	126.14
Receiver loss L _R (dB)	7.40
Received power P _R (dBm)	-50.18

Why NOT FSO?

- Pointing of telescopes is critical
 - Accurate tracking systems are needed
- Atmospheric attenuation in clear sky is not critical BUT
- ATTENUATION OF CLOUDS AND FOG IS UP TO 300 dB/km (yes, 300, no mistakes)
 - Critical for ground links, especially in some zones of the Earth
 - Ideal for Inter-Satellite Links (ISLs)
- Other issue in the atmosphere is turbulence that de-focuses beams

Examples of Option

Examples of Optical Communication Technologies

• The European Champion: TESAT

• SpaceX provider? Mynaric

The second secon

Typical Optical Front-End of a LEO Transceiver

The need of (Optical) ISLs in Megaconstellations

- StarLink Satellites are belived to bear an optical ISL from 2023 onward. Why?
 - Coverage of remote or hostile ground areas & Oceans: the LEO satellite collecting or delivering traffic to the user may not have any ground station in visibility to handle it...
 - In general, high-capacity ISLs ease ground stations planning and operation – intersatellite routing can be implemented

FSO DD receiver

Suited to IM/DD formats like OOK and PPM

FSO LINK

The Achille's Hell of the DD receiver

The Electrical Pre-Amplifier is NOISY and its noise overwhelms the photodetector's own shot noise: the performance is NOT shot-noise limited, it is rather THERMAL-NOISE-LIMITED and it's 10 dB away form the Quantum Limit

The state of the s

Coherent FSO Receiver

- With modern LASERS and/or external modulators, we can implement any amplitude/phase modulation on the optical transmitted beam
- Phase modulation cannot be detected by a DD receiver, that only senses envelope variations of the optical wave

$$E_R(t) = E_0 A(t) \cos(2\pi f_0 t + \phi(t)) + E_{0L} \cos(2\pi f_L t + \phi_L)$$

Optical-to-RF conversion

 The photodetector detects the (instantaneous) power of the combined signal (R photodetector responsivity)

$$I(t) = R \left[\sqrt{2P_M} A(t) \cos\left(2\pi f_0 t + \phi(t)\right) + \sqrt{2P_L} \cos(2\pi f_L t + \phi_L) \right]^2$$

 Doing the computation and removing optical-frequency terms, we are left with

$$I(t) = RP_{M}A^{2}(t) + RP_{L} + 2R\sqrt{P_{M}P_{L}}A(t)\cos(2\pi f_{IF}t + \phi(t) - \phi_{L})$$

- The amplitude/phase modulation of the incoming optical signal is transferred onto the IF radio signal at frequency $f_{IF} = f_0 f_I$
- We can now use a standard digital radio receiver to demodulate the digital data! Any constellation!

Balanced Coherent Receiver

The low-frequency terms are automatically removed by a balanced

configuration, wherein the Optical Hybrid splits the local laser wave with 180 degrees phase shift

- The combined shot-noise term *i*(*t*) for the two detectors sums up to the useful signal, driving the sensitivity of the receiver
- The noise psd is proportional just to the power of the local LASER (the power of the incoming signal is negligible):

$$I(t) = 2R\sqrt{P_M P_L} A(t) \cos\left(2\pi f_{IF} t + \phi(t) - \phi_L\right) + i(t) \quad , \quad S_i(f) = qRP_L$$

property and the second

How Good is it?

$$I(t) = 2R\sqrt{P_M P_L} A(t) \cos\left(2\pi f_{IF} t + \phi(t) - \phi_L\right) + i(t) \quad , \quad S_i(f) = qRP_L$$

1. The high-intensity shot noise is Gaussian (white) with

$$N_0 / 2 = qRP_L$$

2. Assuming BPSK/QPSK modulation, A(t)=1 and

$$E_b = T_b \left(2R \sqrt{P_M P_L} \right)^2 / 2$$

3. The BER is

$$Q\left(\sqrt{\frac{2E_b}{N_0}}\right) = Q\left(\sqrt{\frac{T_b\left(2R\sqrt{P_MP_L}\right)^2}{2qRP_L}}\right) = Q\left(\sqrt{\frac{2RP_MT_b}{q}}\right) = Q\left(\sqrt{2N_b}\right)$$

And the performance?

• $N_b = \frac{RP_MT_b}{q}$ is the average number of received photons /bit

BER

- No impact of electrical noise (the detected signal is strong)
- No need of optical (pre)amplifier
- 3 dB away from QL for OOK
- Even better than QL with homodyne conversion (needs I/Q optical oscillator)

Balanced Homodyne I/Q Receiver – Any Constellations

 The local LASER has the same frequency as the incoming signal

 It is the exact equivalent of an RF I/Q baseband demodulator

Implemented in a single integrated-optics component

